LOCKED IN ICE
Locked in Ice

Nansen's Daring Quest for the North Pole

Peter Lourie

Christy Ottaviano Books
Henry Holt and Company
New York
There are many people I’d like to thank for help researching and writing this book. First, a special thank-you to Larry Rosler and Geoff Carroll, longtime friends and wise counselors. Also a big thank-you to the following: Anne Melgård, Guro Tangvald, and Jens Petter Kollhøj at the National Library of Norway in Oslo; Harald Dag Jølle of the Norwegian Polar Institute, in Tromsø; Karen Blaauw Helle, emeritus professor of physiology, Department of Biomedicine, University of Bergen, Bergen, Norway; Carl Emil Vogt, University of Oslo and the Center for Studies of Holocaust and Religious Minorities; Susan Barr, senior polar adviser, Riksantikvaren/Directorate for Cultural Heritage; Dr. Robert Marc Friedman, professor of history, Department of Archaeology, Conservation, and History, University of Oslo; Karin Berg, former director of Oslo’s Holmenkollen Ski Museum; Geir O. Klæver, director, Fram Museum; Tom Nickelsen Gram, tour guide at the Fram Museum; Ola Just Haugbo, manager of information systems, Fridtjof Nansen Institute; Claes Lykke Ragnar, head of administration and information, Fridtjof Nansen Institute; Will Ambrose, vice-dean for the School of the Coastal Environment at Coastal Carolina University; and Joanne Muratori. Also Paul Schurke, Gerald Johnson, Charles Johnson, Ed Blechner, Martin Wik Fowler, Maartje Nelemans, Ratchanee and Tor-Inge Eriksen, Arle Larsen, Charlotte Schippers, Samantha and Matt Freemont-Smith, Henry Jova, Kyla and Clifford Hart, Bjorn Peterson, Jessica Anderson, and wise counselor Brooke Bessesen. A special thank-you to my editor, Christy Ottaviano, whose unwavering explorer’s heart has supported me every step of the way on this Arctic journey.

For Dan Brayton, whose enthusiasm for all things Fram and the sea, and whose advice and friendship, inspired this book.
Contents

INTRODUCTION
XVII

Part One

FRIDTJOF NANSEN AND HIS DREAM
1861–1893

- **YOUNG SKIER** 3
- **THE VIKING AND FIRST ARCTIC ICE** 4
- **BERGEN AND A DARING TREK OVER THE MOUNTAINS** 8
- **GREENLAND** 10
- **EVA** 19
- **NANSEN SETS HIS SIGHTS ON THE NORTH POLE** 20
- **THE PLAN: FOLLOW THE JEANNETTE** 22
- **BUILDING AN ICE SHIP** 26
- **A CREW OF TWELVE** 28

Part Two

THE JOURNEY NORTH
JUNE 24, 1893–MARCH 14, 1894

- **LEAVING HOME** 35
- **THE FRAM LOCKED IN ICE** 40
- **LIFE ABOARD THE FRAM: THE ADVENTURE AND MONOTONY OF BEING STUCK IN ICE** 43
- **SCIENCE ABOARD** 59
- **DECISION TO LEAVE THE SHIP** 64
Part Three
OUTFITTING FOR A TWO-MAN DASH
FEBRUARY 1895

PREPARATIONS 75
TENT 78
CLOTHING 78
DOUBLE SLEEPING BAG 80
SLEDS, KAYAKS, AND GUNS 81
COOK KIT AND MEDICINE 85
INSTRUMENTS FOR NAVIGATION 86

Part Four
ONTO THE ICE
MARCH 14–APRIL 6, 1895

EACH MILE A NEW RECORD 89
THE COLD 96
FIRST DOG TO DIE 99
THE ICE, THE ROUTINE, THE DOGS 101
CRACKING ICE AND OPENING LEADS 103
DESPERATE WORK 105
FARthest NORTH 107

Part Five
TURNING SOUTH
APRIL 8–MAY 31, 1895

CALCULATIONS 113
THIN ICE AND BURNING THE THIRD SLED 116
BIRTHDAY, NARWHALS, AND BEAR TRACKS 120
THE BIRDS COME BACK 122

Part Six
TO THE KAYAKS
JUNE 1–JULY 22, 1895

MENDING THE KAYAKS 127
WATER SKY, THE COLOR OF HOPE 128
ONE DOG LEFT FOR NANSEN, TWO FOR JOHANSEN 129
SALVATION IS A SEAL 132
SEAL-BLOOD PANCAKES AND TENT ON FIRE 134
FIRST BEAR 135
DEPARTING HOMESICK CAMP 138

Part Seven
LAND AT LAST
JULY 25–AUGUST 15, 1895

"WE SHALL REACH IT TODAY!" 141
POLAR BEAR ATTACK 143
FOLLOWING ALONG GLACIERS 146
ROGUE WALRUS 149
FEET ON DRY LAND 150

Part Eight
FRANZ JOSEF LAND
BEARS, WALRUS, AND A WINTER HOME
AUGUST 16–SEPTEMBER 30, 1895

BUT WHAT LAND? 153
COLD CLOSING IN, TIME TO WINTER OVER 154
HARVESTING WALRUS FOR WINTER 156
BUILDING A WINTER DWELLING 158
Our object is to investigate the great unknown region that surrounds the Pole, and these investigations will be equally important from a scientific point of view whether the expedition passes over the polar point itself or at some distance from it.

—Fridtjof Nansen

The difficult is what takes a little time; the impossible is what takes a little longer.

—Fridtjof Nansen
FRIDTJOF NANSEN, a Norwegian scientist and explorer, had a wild idea. On June 24, 1893, he set sail to explore the Arctic and become the first to reach the North Pole. Others who attempted the same journey met with disaster, often fatal. But Nansen planned to get there by an unusual method. With a crew of twelve and a specially designed ship called the Fram, he planned to purposely lock his vessel into the frozen wasteland and “float” on the Arctic pack ice right over the top of the world and down the other side. Veterans of polar expeditions thought he was mad.

In the late nineteenth century, the North Pole was cloaked in mystery. No one had reached the northernmost place on the globe. People wondered if it might be a landmass covered with ice. Or perhaps an open ocean? Did the Arctic hold, as some believed, a lost civilization?
In September 1893, heading into the unknown, Nansen drove his ship into the ice floes of the Arctic Ocean above Siberia, the same ice that had crushed so many vessels in the past. He let powerful polar currents carry the Fram slowly northward toward the pole. Then after a year and a half of drifting a few miles a day, icebound and frustrated by the snail’s pace of being locked in ice, Nansen realized the ship might miss the North Pole by hundreds of miles. So he made a fateful decision: he and crew member Frederik Hjalmar Johansen would abandon the safety of the ship and cross the polar ice together with three sleds, twenty-eight sled dogs, and two small, canvas-covered kayaks. In the polar spring of 1895, they set off to do what no one on earth had done before—reach the top of the world.

Within a month, the ice became an impassable jumble of frozen slabs and slushy open water. A mere 232 nautical miles from their destination—and the farthest north any human had ever traveled—the men were forced to turn south in search of land. Aiming for a small group of islands three hundred miles away, they began the harrowing adventure of fourteen months racing the shrinking pack ice and trying to stay alive in an Arctic wasteland. This is their story.
Part One

FRIDTJOF NANSEN

and HIS DREAM

1861–1893
Born in 1861, Fridtjof (fritch-off) Nansen grew up in a privileged family. Nansen’s father was a respected lawyer. He was strict and cautious. Not an athletic man, he was slight, unlike Nansen’s mother, who was robust and fierce. Despite the social customs of the day, which discouraged women from skiing in public, Nansen’s mother skied in trousers. She inspired him with a love of adventure, while his father taught him discipline.

Growing up among the spruce forests, marshes, lakes, and mountains that surround Kristiania (the capital of Norway, later named Oslo), Nansen loved the outdoors. He loved making bows and arrows. An older half brother taught him how to fish, hunt, and survive in the wilderness. Nansen was particularly good at individual sports: swimming, skating, and skiing, especially ski-jumping. He loved winter most. When he was just two, a seven-year-old neighbor taught him to ski, and from the ages of six to eighteen, Nansen skied two miles from his farm to school, and back again.
At fifteen, Nansen won a three-mile speed skating race and did well in ski-jumping and cross-country events. Physically a bit awkward and overweight when he was young, in his late teens he grew slim and muscular. By the time he went to the university in Kristiania, Nansen could walk into a room, and everyone—especially the ladies—would notice him. With striking deep blue eyes and a full head of blond hair, he had a distinct magnetism.

The VIKING and FIRST ARCTIC ICE

When Nansen prepared for university, he could not decide which course of study to follow. He wanted to be an engineer, then a soldier, then a forester. To live a life in the open air finally influenced his decision to choose zoology, specifically the study of lower marine creatures of the Arctic Ocean. In zoology, his passion for the natural world combined perfectly with his curiosity and love of science.

Nansen fell in love with the Arctic when he was twenty years old and saw pack ice for the first time. He sailed aboard a sealing vessel called the *Viking* for five adventurous months in the oceans between Spitsbergen, Greenland, and Iceland.

Though he grew up in the forests not far from the sea, this was the first time Nansen learned about ships, and it was his first experience facing a big storm at sea. A few days into the trip, he conquered his seasickness and crossed the Arctic Circle. He listened avidly to the stories of the sailors, who lived like free spirits. He was impressed by their “smiling, reckless courage amid the storm and raging seas.”

When ice was spotted at 68° north latitude, Nansen came on deck and peered into the darkness. (For more on latitude and longitude, see glossary).
“Something white emerged from the blackness,” he wrote when he saw the ice. “It grew larger and larger, and gleamed still more white against a background black as night.” It was the beginning of the pack ice that stretched for hundreds of miles northward into “the polar night beneath the stars and the northern lights.”

Nansen felt a shiver. He’d seen ice before, but nothing compared to this. Here was ice on the “threshold of a new and unknown world.” He heard the ice floes colliding, like the roar of great waterfalls. And the sound was thrilling.

Drawing the gleaming ice in his sketchbook, he wanted to capture the patterns of light in the polar sky. Nansen learned you could read the ice by studying the sky on the horizon. When ice lies ahead, the clouds on the horizon reflect a white glare, but when there are dark streaks on the underside of low clouds, there will be open water ahead because it is ice-free, a condition called “water sky.”

Aboard the Viking, Nansen captured birds and dissected them. Through the ice, he took temperatures of the water at various depths and collected water samples, along with small marine animals in his nets. He examined these through a microscope on board and described what he saw. Nansen studied in his cabin for days, but when he emerged, the crew was impressed that he was willing to help them search and hunt for seals. They admired Nansen’s excellent marksmanship.
Nansen felled his first polar bear on that trip and regretted how easy it was to kill such a magnificent creature: “It seemed so unfair that a little bit of lead should suddenly bring to an end that free life on the boundless expanse of ice.”

All spring and early summer, they searched for seal herds, until, like so many unfortunate ships in the Arctic, the Viking got frozen into the ice off Greenland. Nansen climbed into the crow’s nest and gazed for hours at the unexplored mountains and glaciers on the east coast of Greenland, only a few miles away. He longed to walk out on the ice and go ashore to explore, but the captain would not let him.

After drifting north along the Greenland coast, the ship broke free of the ice in mid-July. By August, Nansen returned to Kristiania with his collection of zoological specimens and a new plan to return to Greenland.

BERGEN and a DARING TREK
OVER the MOUNTAINS

Instead of resuming his studies at the university in Kristiania, however, Nansen took a job as a junior curator at the Bergen Museum. Just shy of his twenty-first birthday, he went to live in a different kind of city than the one he knew. On the west coast of Norway, in the rainy, milder weather of Bergen, Norway’s second largest city, Nansen threw himself into museum work, labeling and studying specimens, learning to draw, teaching himself zoology, and working alongside the famous natural scientists of his day. He took a particular interest in the structure of the central nervous system of lower marine creatures. Because of new and improved microscopes, scientists of that time were beginning to study the cells of animals. Nansen focused on nerve cells.

After long hours of study in the lab in the gray, wet, sea town, where the sun was forever blocked by clouds, Nansen longed for the crisp snows and spruce forests of his youth. He yearned to be skiing again.

So one day Nansen decided to travel home to enter a ski race back in Kristiania and to visit a girlfriend. He would travel by train, horse carriage, and boat, but mostly he would have to ski through rugged mountainous terrain to get back home. His friends

Polar researcher Fridtjof Nansen.

Nansen using the microscope at the Bergen Museum, 1882–1888.

Fridtjof Nansen postcard.
tried to talk him out of it, but Nansen set out anyway with his heavy wood skis and a hunting dog named Flink (“Clever” in Norwegian) on a 186-mile trek in the dead of winter, mostly across uninhabited, craggy mountains—a trip never attempted before. For days no one knew where he was or whether he was dead or alive.

Along the way, Nansen occasionally met farmers and hunters, but he preferred being alone in the silent wilderness. He was happy skiing on “those wonderful, long, steep mountainsides, where the snow lies soft as eiderdown, where one can ski as fast as one desires. . . . The snow sprays knee-high to swirl up in white clouds behind; but ahead all is clear. You cleft the snow like an arrow. . . .”

When he got to Kristiania, he came in ninth out of fifty-three competitors in the ski jump. He spent ten days in the city, visited his girlfriend, then skied with his dog by his side back through the mountains to Bergen. It gave him a lot of time to think about a Greenland adventure.

GREENLAND

Just about everyone thought Nansen’s idea of skiing across Greenland from the uninhabited east coast to the sparsely populated west would end in disaster. Again, friends tried to dissuade him. Ridiculed in the press in Norway and England, he bucked the tide of popular opinion. Some said that it was stubborn pride that made Nansen willing to risk his own life and the life of his men just to prove his point. But Nansen was sure he would be successful; he would thoroughly plan his trip.

He did, however, have a hard time raising money for the expedition. Yet with typical visionary spirit and iron will, he persisted until a wealthy backer from Denmark finally got behind the project.

Nansen chose an experienced sea captain as his main partner. Five years older than Nansen, red-bearded Otto Sverdrup was tall and mature and already a veteran sea captain at thirty-two. Along with two other hardy Norwegians, all expert skiers, Nansen invited two native Sami men from the north of Norway. Indigenous people, formerly known as Lapps or Laplanders, the Sami live in the far north of Scandinavia and Russia.
He knew the sleds used by explorers on previous Arctic expeditions were overly burdensome and quickly got bogged down in snow and ice. Always the inventor, Nansen designed five lighter sleds made of ash, which did not require metal nails. They were 9.5 feet long and 1.5 feet wide and weighed only 28 pounds. (The model for this sled, still used today, is called a Nansen sled.) He tested a three-man sleeping bag, a special tent, and a small alcohol camp stove that could warm food while also melting snow for drinking water. Nansen also invented a special flask the skiers would fill with snow in the morning and tuck next to their bodies, turning the snow into drinking water while traveling during the day. He designed special clothes and boots and goggles for protection against ice and sun glare.

Nansen planned to eat energy-rich expedition foods—liver pâté, jam, condensed soup and milk, coffee, sugar, and a concentrated, nutritious mixture called pemmican. It was made of ground-up meat mixed with an equal amount of fat, often with the addition of dried berries, and formed into solid cakes. As it turned out, however, because of an error in adding fat to the pemmican compound, the expeditioners on the Greenland trip suffered from acute fat deficiency. Nansen would correct this on his next polar journey.
Nansen also invented something called meat-chocolate, a nutrition-rich mixture of meat powder and chocolate. The sugar from the chocolate, combined with the protein of the meat, gave the men the maximum in calories and energy.

Just as important, Nansen brought scientific instruments, as well as guns, ammunition, cameras, watches, tools, tarps, skis, ski poles, rope, matches, and notebooks. He thought of everything, right down to the sewing needles.

While busily preparing for Greenland, Nansen was able to complete the examinations, lectures, and defense of his research thesis for a doctoral degree in neuroscience (the study of the nervous system and the brain) just before he departed. His research presented a revolutionary idea: that the brain consists of individual, separate nerve cells. To this day, some scientists declare that Nansen’s early work on nerve cells is worthy of the Nobel Prize in medicine.

Nansen and his five companions left from Scotland on May 9, 1888, boarding a steamer for Iceland, then took another vessel to Greenland. When the men reached Greenland’s east coast in mid-July, they immediately ran into trouble with shifting ice floes and had to camp on the ice for weeks. It was too dangerous to make the final push to shore.

It took twenty-four days before Nansen’s team finally was ready to make the crossing. They would have to move fast, as the short Arctic summer was already ending. A thick mist lifted in the morning, and the men rose to a sunlit day. With harnesses around their chests, the six men began to haul the sleds over bare rock and rough ice, climbing into uncharted mountains to reach the interior ice cap.

Water crashed at the edge of the ice where they camped; the floes disintegrated beneath them. They drifted far south of where Nansen wanted to begin his trek, and the currents kept jamming ice onto ice. They moved camp to stay alive, and they hardly slept for twelve days. When the team finally reached shore, they returned to their boats, found narrow channels, and rowed northward for days with very little sleep.
In snow squalls, they climbed to nearly 9,000 feet, dragging their loads across dangerous cracks in the ice called crevasses. They endured temperatures that dropped to −46 °Celsius, or −51 °Fahrenheit (Nansen used Celsius or centigrade—“C”—which is what scientists use today). They marched for weeks, always hungry and bent over double, either in blinding snow or scorching sunlight. This late in the summer, the snow was like sand, dry and loose, and terrible for skis and the four sleds carrying two hundred pounds each. The fifth sled dragged five hundred pounds and was pulled by Sverdrup and Nansen together. Nansen and his men tried to slake their constant thirst. In camp, they discovered eating straight butter helped. On the trail, to keep their mouths moist, they chewed slivers of bamboo and bits of their wood snowshoes.

When they finally reached the west coast, with its steep and rugged mountains, they were forced to return to the water. On one of the fjords (a fjord is a long, narrow, deep inlet of the sea between high cliffs), Sverdrup built a boat from pieces of their wood sleds and nearby willow trees. After rowing north for days, they glided into the small village of Godthâb. It had taken them forty-nine days, and they had not changed their clothes or washed their faces the whole trip.

Fridtjof Nansen and his five teammates had succeeded in being the first ever to cross the Greenland ice cap. Along the way, they had collected valuable meteorological data, recording temperatures, wind speeds, altitudes, snow depths, and other scientific information about the unexplored interior of Greenland.

Unfortunately, the team missed the last boat sailing for Europe that winter, so the men had to wait seven months for the next ship to take them home. During the dark Arctic winter, Nansen took the opportunity to make friends with the Inuit villagers and learn all he could from them. He learned to speak some of their language.

For weeks he lived in their sod-and-stone houses, which were half buried in the ground to preserve warmth through the brutal cold. He learned how to hunt seals with harpoons and how to handle Inuit kayaks made of sealskins. Nansen marveled at how the Arctic people had adapted to such a harsh environment. He even foresaw that the approach of Western society would soon threaten their native way of life. Later he wrote a book about his Greenland experience called *Eskimo Life*.
At only twenty-seven years old, the handsome and self-assured blond Viking had beaten American explorer Robert Peary’s attempt to cross Greenland, and he had given Norway a national champion. Nansen fever swept through Europe. The Royal Geographical Society in London awarded him the prestigious Patron’s Medal in 1891.

While in Greenland, Nansen and Sverdrup had hatched a plan for their next Arctic adventure: an attempt to reach the North Pole. To trek to the very top of the world would be the biggest prize of all.

EVA

THAT SAME YEAR, Nansen married Eva Sars, a celebrated concert singer. A fiercely independent thinker, Eva was the daughter of a professor of zoology and the younger sister of well-known historian Ernst Sars and marine zoologist Georg Ossian Sars. She and Nansen had met a few years before at a ski resort.

On the docks of Kristiania, when Nansen finally returned home in 1889, a third of the city’s population—as many as forty thousand spectators—came out to cheer their new hero.
Nansen called his bride the best woman skier in Norway. At a time when women did not enter ski competitions, Eva would show up at ski-jumping events with a friend, and they were the only two women to enter the contest. Eva loved to ski into the mountains alone. When she and Nansen skied in the mountains together, the Kristiania newspapers eagerly reported on their travels.

Nansen sets his sights on the North Pole

A year after returning from Greenland, Nansen proposed an expedition to the North Pole, but his primary goal was not merely to reach the top of the world. Even if he were to miss it by miles, he said, the success of his journey would be measured by the new scientific data he planned to collect in that little-known region.

Nansen would follow in the footsteps of his Viking ancestors, who were among the first non-native travelers to the Arctic. A Norse text from the Middle Ages contains a remarkable description of what the Vikings found:

As soon as one has traversed the greater part of the wild sea, one comes upon such a huge quantity of ice that nowhere in the whole world has the like been known. Some of the ice...from 8 to 10 feet thick...is of a wonderful nature. It lies at times quite still, as one would expect, with openings or large fjords in it; but sometimes its movement is so strong and rapid as to equal that of a ship running before the wind.

For centuries, the world believed Arctic ice blocked a body of open water at the pole and perhaps a landmass “pushing” the ice southward. The North Pole, some speculated, might be reached through a passage of warmer north-running currents penetrating the ice. Expedition after expedition from Europe set out to find this open passageway.

In 1607, Henry Hudson attempted to reach the pole by sailing along the east coast of Greenland, but his route was blocked by ice. Hudson made another attempt along the west coast of Spitsbergen, but he came up against more ice. At the point where he turned back, Hudson had reached 79°23’ north latitude, or 637 nautical miles from the North Pole.
Part One

Fellow Englishman William Parry got stuck in the ice off the coast of the archipelago of Svalbard in 1827. Parry put boats on sleds and dragged them northward. But the south-flowing current carried the ice backward, forcing him to abandon his attempt. He made it to within 435 miles of the pole (82°45′ N), the farthest north any human had traveled to that day. Parry’s achievement stood for nearly five decades, until 1876, when another British explorer, Albert Markham, despite suffering from scurvy and lack of proper clothing, traveled with dogs and sleds, and missed the pole by four hundred miles (83°20′ N).

One more northerly record was set before Nansen’s quest. James Booth Lockwood on the Greely Expedition reached Mary Murray Island off northern Greenland, 396 miles from the pole (83°24′ N), just a tad closer than Markham.

Still people clung to the idea that beyond all that intractable ice, a water route could lead to the pole and beyond, perhaps even becoming a northeast passage to India. As they pushed northward, the biggest problem Arctic explorers faced was the fragility of their ships. Advancing with wooden ships a mile or two in the polar ice pack was grueling work. Most ships became frozen into the ice and were either crushed or, if lucky, dislodged after months of waiting for the ice to melt in the short Arctic summer.

The PLAN: FOLLOW the JEANNETTE

To reach the North Pole, Nansen studied the forces of nature. Rather than going against the currents, as most other failed expeditions had done, he wanted to try something different. He would build a special ship, one strong enough to withstand the ice. He would deliberately freeze it into the northward-drifting ice pack and travel at the same slow speed that the polar current carried the ice. But he had to find the right current first—one that might take him to the top of the world—and then build a strong ship.

After much thought and investigation, Nansen was led to what he called the “Jeannette current,” an east–west flow of water running across the Polar Basin. The voyage of the USS Jeannette (1879–81) was one of the most famous expeditions that failed to reach the North Pole. Nansen learned a lot from the ship’s tragic history. Captain George De Long of the United States Navy tried a Bering Sea route to the pole because whaling ships had reported a warm northerly “Japanese” current, and De Long hoped the ice would be less severe in that direction, perhaps all the way to the pole.

It turned out to be wishful thinking. On September 6, 1879, the Jeannette got lodged ("nipped") into the ice near Wrangel Island, above eastern Siberia, and drifted, a frozen prisoner, for two years. De Long kept measurements of ice and weather. During his long drift, he thought it might be possible to reach the pole on the ice if they took sleds and dogs and dashed for it. But the ice eventually crushed the ship north of the New Siberian Islands, and when it sank, the thirty-three survivors, with forty dogs, dragged three small open boats southward toward the native villages of coastal Siberia a thousand miles away. While wandering through the Arctic looking for open water, they hunted polar bear and walrus to survive. (They did not eat their dogs as so many polar explorers have done to survive.) When the ice turned to
water, they jumped into their leaky boats and got separated in a storm. De Long and nineteen others died. Only thirteen of the Jeannette crew were rescued.

That might have been the sad end of the story of the Jeannette—just another Arctic disaster where the ice wins out—except that three years after the Jeannette was destroyed, some of the sunken vessel’s remains were discovered by Inuit hunters on the coast of Greenland. Apparently, the debris had been carried 2,900 miles on ice floes driven by the current across the polar basin, perhaps even coming close to the North Pole.

In 1894 Nansen read an article in a Norwegian journal by the well-known meteorologist Henrik Mohn, claiming that these “sundry articles” from the Jeannette, including a pair of oilskin trousers and the peak of a cap on which was written the name of a rescued crew member, must have made it to Greenland in no other way than by crossing near the North Pole on that very current. Nansen calculated the items must have traveled very slowly in the ice, perhaps only one to two miles in a twenty-four-hour period.

Nansen studied this current and was confident it existed. He found other instances of water flowing over the polar region. Among the driftwood on the coast of Greenland was found a device that Inupiaq Eskimos used in Alaska for hunting birds; it too must have traveled on the same current as the items from the Jeannette.

Nansen’s plan then was to drift in the same direction as the fragments of the Jeannette had done, from the New Siberian Islands across the pole to somewhere between Greenland and Spitsbergen (see map).

When he proposed the journey, almost every polar expert thought he would endanger himself and his crew in such an undertaking. Some thought he was crazy, as they had said of his previous expeditions. They thought his ship would certainly be crushed by the ice pack—if not at first, then undoubtedly later in the winter months, “when the ice resembled a mountain frozen fast to the ship’s side.”
In spite of near-unanimous skepticism, Nansen remained confident and proceeded with his plans.

BUILDING AN ICE SHIP

*W*HY DID SO many call Nansen crazy for his idea of floating—locked in ice—to the pole? After all, he’d chosen a well-respected boat builder to build the proper ship. Colin Archer was more than a shipwright; he was one of the most celebrated boat designers of his era. Archer’s boats were quintessentially Norwegian and seaworthy, with the elegant, deceptively simple lines that only a people with several thousand years of living on a dangerous coast and deep fjords could create. The son of Scottish immigrants, Colin Archer was beloved in Norway. By the time he designed the *Fram*, his boats were legendary for safety.

One hundred twenty-eight feet long and over four hundred gross tons weight, the *Fram* (meaning “forward” in Norwegian) was a three-masted, square topsail schooner. Its massive construction was intended to serve a single purpose: to survive the enormous forces of the Arctic through all seasons, especially winter, when the deepening, ever-shifting sea ice could exert tremendous pressure on anything floating within it. Yet veteran Arctic travelers, whose ships had been nipped by the ice and whose escape to safety became heroic tales, criticized the *Fram’s* design. They had seen firsthand how their own ships crumpled like crackers in the iron fist of the ice. They had no confidence in the *Fram*, or in Nansen’s plan to freeze the ship into the pack ice.

Although many tried to dissuade him, Nansen, unfazed, convinced the Norwegian government to pay for the expedition. Nansen’s foresight, intelligence, planning, and leadership had gotten him across Greenland when his friends advised him against that journey. He was sure the same qualities would get him to the North Pole.
On the outside, the Fram was planked with a skin of green-heart, a dense, tropical hardwood nearly impervious to rot. Beneath, the ship consisted of multiple layers of carefully engineered wooden ingenuity—massive oak frames, oversize deck timbers, and several layers of planking. The hull shape, too, was calculated to endure. Unusually wide at thirty-four feet, it was quite round—so the pack ice would push it up instead of crushing it. The object of the ship's design, as Colin Archer explained, was to enable the whole craft “to slip like an eel out of the embraces of the ice.”

Applications to accompany Nansen to the North Pole poured in from around the world, but Nansen chose a small, well-trained crew of twelve Norwegians for the expedition. Most of them were in their thirties. As second in command, Otto Sverdrup, now thirty-eight, would captain the ship. Nansen knew from crossing Greenland with Sverdrup that he was an experienced sailor, a proficient skier, and a good hunter. Most important, Sverdrup was calm and remarkably clearheaded under stress.

A CREW OF TWELVE

Sigurd Scott-Hansen, as chief scientist aboard, would be in charge of keeping meteorological, astronomical, and magnetic observations. Henrik Greve Blessing—still a medical student when he applied to go on board the Fram—was a competent skier and would act as the ship's doctor and botanist.

Theodor Jacobsen, a flamboyant storyteller, had the most number of years at sea and would serve as chief mate under Sverdrup. Jacobsen was a talkative man with dark hair and penetrating eyes.
The oldest aboard would be the chief engineer, Anton Amundsen. At forty, Amundsen had served in the Norwegian navy for twenty-five years. Often isolated from the others, he would devote his energies to his work on the machinery aboard the Fram. Second engineer was Lars Pettersen, also a navy veteran, who would act as machinist and blacksmith. Hardworking and agreeable, Pettersen would be a stoker in the engine room until the Fram got locked into the ice and the engines were no longer needed. He would take over the cooking on the latter part of the trip.

Besides Sverdrup, Nansen had personally asked only one other person to join the Fram—Peder Hendriksen, who had spent twenty years at sea as a sailor, hunter, and harpooner. A good-natured man, Hendriksen loved to tell lively stories he’d collected from a rough-and-tumble career aboard sailing vessels.

As with all the men, Bernhard Nordahl, a former sailor in the navy, went aboard with multiple duties: stoker and scientific assistant, and most important as the electrician who would keep the lights shining aboard, essential for the morale of the men during the long months of winter darkness.

Ivar Mogstad was hired as carpenter and builder. He would entertain the men with his violin. He was ingenious at building things and making equipment run. He was also moody and prone to fights. Adolf Juell came aboard as cook and steward, and Bernt Bentsen signed on at the last minute. Bentsen had spent many years sailing Arctic waters.

Finally, Hjalmar Johansen had military training, was an excellent athlete, muscular, stocky, and sturdy. He had pestered Nansen to be included in the expedition until Nansen agreed to let him go in the only position available: stoker in the engine room.

Many aboard were accustomed to long sea voyages, but Nansen knew his crew would be tested by years of living in close quarters while enduring extreme cold and endless months of darkness. Nansen had wanted scientists to come along, but none applied. The men who formed his crew were a rugged bunch of characters, who Nansen prayed would find some kind of harmony during the arduous journey ahead. At the outset, he did not know how well each might perform. He wouldn’t know until the Fram was committed to the ice, locked away for years.

The crew of the Fram pose for a photo.
Sitting, from left to right: Adolf Juell, Lars Pettersen (closest), Bernhard Nordahl, and Peder Hendriksen. Standing, from left to right: Ivar Mogstad, Henrik Greve Blessing, Hjalmar Johansen, Sigurd Scott-Hansen (sitting), Anton Amundsen, Bernt Bentsen, Otto Sverdrup, and Theodor Jacobsen.
Part Two

The JOURNEY NORTH

JUNE 24, 1893—MARCH 14, 1894
To be continued...

If you're enjoying *Locked In Ice*, head over to Amazon for the full text. Over three hundred pages filled with Nansen's incredible adventures as well as the science behind his discoveries.

ORDER FROM AMAZON